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We investigate a recently introduced integral equation which takes into account three-body inter-
actions via an effective pair potential. The scheme proposed here essentially reduces to solving a
reference hypernetted-chain equation with a state-dependent effective potential, and a hard-sphere
reference bridge function that minimizes the free energy per particle. Our computational algorithm
is shown to be stable and rapidly convergent. As a whole, the proposed procedure yields thermody-
namic properties in accordance with simulation results for systems with Axilrod-Teller triple-dipole
potential plus a Lennard-Jones interaction, and improves upon previous integral-equation calcula-
tions. Predictions obtained for the gas-liquid coexistence of argon are in remarkable agreement with
experimental results, and show unequivocally that the influence of the three-body classical dispersion
forces (and not only quantum effects) must be explicitly incorporated to account for the deviations
between pure Lennard-Jones systems and real fluids. Moreover, the integral equation approach as
introduced here proves to be a reliable tool and an inexpensive probe to assess the influence of
three-body interactions in a consistent way. For completeness, the no-solution line of the integral
equation is also presented. A study of the behavior of the isothermal compressibility in the vicinity
of the no-solution boundary shows the presence of a divergence that deviates from a power law at
high densities, and the appearance of a singularity with the characteristics of square-root branch
point at low density (a feature also found in the hypernetted-chain approximation in a variety of
systems). The no-solution line, unfortunately, hides the coexistence curve near the critical point,
and this constitutes the only severe drawback in our approach. An alternative for bypassing this
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shortcoming is explored.

PACS number(s): 61.20.Gy, 61.25.Bi, 64.60.Fr, 64.70.Fx

I. INTRODUCTION

In the standard statistical-mechanics treatment of flu-
ids, the principle of pairwise additivity of the poten-
tial energy is widely assumed to be valid. However, al-
ready in the early seventies, Barker and co-workers [1-4]
showed unambiguously that a three-body interaction (the
Axilrod-Teller [5] triple-dipole potential) had to be incor-
porated to correctly describe the experimental properties
of argon. Recently, Attard [6] has shown that the per-
turbation approach proposed by Barker et al. is virtu-
ally exact for argon, both in the gas and liquid regimes.
Nevertheless, the integral-equation approach proposed by
Attard [7] is extremely attractive in its own, even if it
cannot match at high densities the perturbation theory.
Attard’s reduction of the three-body problem via the in-
troduction of a state-dependent effective pair potential
is a conceptually simple path of introducing the effect of
three-body correlations in the powerful integral-equation
theory for pairwise additive potentials. As a matter of
fact, the effective-potential route was first explored by
Rushbrooke and Silbert [8] and Casanova et al. [9] in the
late sixties, in a somewhat simpler treatment. We will
here explore a modest improvement of Attard’s extension
of the reference hypernetted-chain (RHNC) closure [6] by
introducing a consistent criterion for the definition of the
reference system. In this respect, our choice has been the
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free-energy minimization proposed by Lado, Foiles, and
Ashcroft [10] which is computationally less involved than
the requirement of thermodynamic consistency between
virial and isothermal compressibility routes. In particu-
lar, we will consider again argon as a testing ground for
the proposed theoretical scheme, focusing on its phase
coexistence properties.

The purpose of the present work is thus twofold. On
the one hand, we want to analyze the ability of the opti-
mized integral equation for the prediction of experimental
results in systems with three-body interactions. We will
see that integral-equation results are remarkably good,
although they do not match the perturbative approach.
The optimized RHNC equation with effective interaction
is thus found to be a powerful tool of predicting thermo-
dynamic properties in real systems. On the other hand,
we have explored the sensitivity of thermodynamic prop-
erties and, in particular, the coexistence curve to the in-
troduction of three-body classical dispersion forces. We
find that by taking into account these interactions brings
the integral-equation results to a much closer agreement
with the experimental gas-liquid coexistence curves. This
makes it evident that the effects of the polarizability are
crucial when studying chemical equilibrium. In relation
with this, in an earlier work, Hansen and Verlet [11] at-
tributed the disagreement on the gas side of the coexis-
tence curve between Lennard-Jones (LJ) fluid models and
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experimental results to the well known failure of the LJ
potential for argon at low densities and low temperatures
[12]. We will see that the improvement on the low-density
side of the coexistence curve reflects (through the chemi-
cal equilibrium condition) a more appropriate treatment
of its liquid counterpart by incorporating three-body ef-
fects, that are obviously more important at high densi-
ties.

This paper can be sketched as follows. Section II is
devoted to a brief summary of the theory. In Sec. III
thermodynamic properties computed in the optimized
RHNC approximation are analyzed and compared with
Monte Carlo data, and previous RHNC and perturbation
theory calculations. Here we illustrate how the introduc-
tion of an optimization criterion to define the reference
system improves the thermodynamic results. A theoret-
ical estimate for the phase diagram of Ar is determined
by applying chemical equilibrium conditions. Finally, in
Section IV we present a study of the “critical” behav-
ior of the integral equation both in the low-density and
high-density boundaries of its no-solution region. Our
analysis shows that there is a region of physical signifi-
cance in the neighborhood of the critical point which is
unreachable to the RHNC equation. In this respect, a
preliminary calculation [13] for the two-body system us-
ing the crossover closure relation (CRS) [14] shows that
this equation might be an alternative to bypass the defi-
ciencies of the RHNC in that region (and, in general, to
cope with the failure of the HNC to yield and appropriate
spinodal behavior at low densities [15,16]. However, this
latter approach lacks an important and desirable feature
present in other approximations, namely, the availabil-
ity of a closed expression to compute chemical potentials
from correlation functions.

II. THEORY
A. Model potential

Particles in a 6-12 Lennard-Jones (LJ) fluid interact
via a pair potential of the form

u(Z)(r) = 4¢ [(0’/7")12 _ (a/r)s] . (1)

In addition to the plain pair interaction we will here in-
troduce the Axilrod-Teller three-body potential [5]

u(3) (1'1 , T2, I'3)

_ ,TiariaTs +3(r12 - T13)(Fa1 - T23)(rsn - r2s)
T32T1s7 33

- (2

Thus, the full N-particle potential energy to be consid-

ered reads

N N
UN = Zu(z)(rij) + Z u(3)(r,',rj,rk). (3)
s z;;fk

The net effect of this potential energy could be expressed
in terms of two-body functions if an effective pair poten-
tial that accounts for the three-body interactions can be

defined. This has recently been done in an elegant way
by Attard [7], who introduced the following effective pair
interaction:

e —Bu® (rq,rz,r
IBU ﬂ(rlz) = —p/[e Bu® (r1r2,rs) _ 1]9(7‘13)9(7‘32)(11'3.

(4)

As formulated in Eq. (4), Bu®(ry3) is a functional of
the pair distribution function, i.e., it is a state-dependent
quantity, which, as Attard has shown [7], retains the lead-
ing contribution of three-body interactions to the pair
potential of mean force.

B. The Ornstein-Zernike equation
and RHNC closure

For homogeneous simple fluids the Ornstein-Zernike
relation reads

Y(r12) = P/C(T‘sz) [v(r13) + h(r13)] dri3 , (5)

where c is the direct correlation function and y = h — ¢
is the series function [17]. This equation is closed by
a functional relation between ¢ and v, that is usually
written

e(riz) = exp [~pu®(r1z) + y(rsz) = B(riz)|
—7(7‘12) -1 9 (6)

where B is the bridge function. In the RHNC one as-
sumes

B(r12) = Bo(r12) (M

with By being the bridge function of a reference system.
In simple fluids the hard-sphere fluid constitutes the sim-
plest and best suited choice. In this case one must find
a consistent criterion to define the single parameter that
determines all properties (including the bridge function)
of the reference system, that is the hard-core diameter.
Lado, Foiles, and Ashcroft [10] gave a physically sound
answer to this question for pairwise additive systems, and
we will see in the next subsection how their explicit recipe
can be applied in the context of this work as well.

The hard-sphere bridge function can be easily evalu-
ated via the empirical formula proposed by Labik and
Malijevsky [18], which has shown to render excellent re-
sults in the context of RHNC calculations for simple LJ
fluids [19] and is the approach adopted in this work.

Following Attard, in the present instance, the RHNC
closure relation (6) has the form

C(7‘12) = exp[ —ﬂu(z) (7‘12) - ﬂueﬁ(rlz)
+7(r12) — Bo(r12)] — v(r12) — 1, (8)

where u*f(r) is given by Eq. (4). Since the effective pair
potential is a convolution of the pair distribution func-
tion, the closure is no longer a local functional of y(r) and
the solution procedure becomes more involved. Equa-
tions (5), (7), and (8) form a closed system of equations
which can be solved by successive iterations. We here
propose the use of a hybrid Newton-Raphson iterative
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scheme [20, 19] which considerably accelerates conver-
gence and is particularly adequate for the present prob-
lem.

C. Three-body integrals and thermodynamic
quantities: Optimized RHNC closure

When the N-particle potential energy of the system is
given by Eq. (3) three-body contributions must be added
to the usual thermodynamic relations. These contribu-
tions are integrals involving the triplet distribution func-
tion g(3), that can be estimated using an extension of
the well known Kirkwood superposition approximation
[21], in which an exponential term is added to account
for the explicit presence of a three-body interaction [6,7,

22], namely
J

2+ 13 +riarisz — 313, 2% —3r3 2% + 3rpra 2

—Bul® (ry,rz,r3) .

(9)

By defining a coordinate system with the origin at parti-
cle 1, and the z axis placed along the vector joining par-
ticles 1 and 2, the set of variables required to describe a
three-particle configuration reduces to {r12,713,z} where
& =T -Tr13/712713. The effective potential then reads

Buf (r13) = —%p/ /

Xg(?‘13)g(\/7'%2 + 12, — 2rior13T)
xrfgdrlgdx (10)

9(3)(1‘17 ra,r3)= g(ry, r2)g(ri,r3)g(rz,r3)e

ﬁu( ) (r12,713,2) __ 1:|

and the Axilrod-Teller interaction

u(s)(rlg,rw,a:) =v 5 (11)
3,73 (1l + 73 — 2ri2 i3 2)”
Hence, the following relations for the excess energy and pressure can be derived:
Uex oo 4722 oo poo  pl
'BN = 27"19/ u(z)(le)g("'lz)?‘fzdﬁz + L / / ﬁu(a)(rlz,7‘137-1)9(3)(7‘12,T13,$)7"fzrf3dT12dT13d$ s
0 o Jo J-1 (12)
pP 2mp /m 5 0ul®(ryy) / / / u® (ri3,713, )
e =1--—C r dr 1= g3 3 r2adrygdrisde.
P 3/, B 12 Or1a 12 — 7‘12 9712 (7'1277'13,$)7‘127’13 T120T134T
(13)

In order to build the phase diagram we need an expression to evaluate the three-body contribution to the excess free
energy. Attard [7] derived an a.ppropriate formula that in our variables reads

ﬂA

ﬁu(s) (r12,713,%)

- 1] g(3)(r12,r13,z)r%zrfsdrlzdrlgdx (14)

to which, in our case, the standard RHNC free energy for pairwise additive systems is added [10]

BA®
N

= 2o [ o) Bolr)ir + 30 (B/px: ~ 1)

e [ {h® (G = 5000 ) 10 (1= ) = i b 7 (15)

In the expression above, gg is the reference-system pair
distribution function, and x7 is the isothermal compress-
ibility, as given by

B/pxT =1~ p&(0) . (16)
Then one simply gets
BA* ,BA(Z) ,BA(3)
N - N N (17)

As mentioned before, Lado, Foiles, and Ashcroft [10] pro-
posed an optimization criterion to define the reference
system so that the Helmholtz free energy is minimized.
The reference hard-sphere diameter is determined by re-
quiring that the following condition is fulfilled:

ar [ (o) - an(ri ) 227D

This can be shown to lead to a minimum in the free

dr=0. (18)

energy [10].

Although Egs. (15) and (18) are exact in the RHNC
scheme for pairwise additive potentials, two conditions
must be satisfied for them to be valid when a state-
dependent effective potential is incorporated. First, the
effective pair potential should be insensitive to variations
in the reference hard-sphere system diameter d. This
guarantees that the expressions for the two-body con-
tribution to the Helmholtz free energy from the RHNC
theory apply in this instance as well. Figure 1 shows
the effective pair potential evaluated for two distinct val-
ues of d. One readily appreciates that d hardly plays
any role in the determination of u¢f. On the other
hand, we need to ensure that the optimization criterion
from Eq. (18) (which is also derived in the context of
two-body potentials) renders a hard-sphere diameter for
which the free energy including three-body contributions
reaches a minimum. To see this, in Fig. 2 we have plot-
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FIG. 1. Effective pair potential from Eq. (4) at kT /e =
1.0 and po® = 0.8, for d/o = 1.0 (solid line) and d/o = 1.1
(dashed line), where d is the reference-system hard-sphere
diameter.

ted the excess Helmholtz free energy as a function of the
reference-system diameter and the value of d which sat-
isfies Eq. (18) is indicated with a filled circle. We see
that this value is slightly off the real minimum (by 2%).
However, this hardly affects thermodynamic properties,
with a maximum deviation in the virial pressure below
1% (internal and free energy are off by less than 0.1%).
From these considerations we might conclude that the
extension of the optimization procedure to this effective-
potential problem is legitimate.

III. THERMODYNAMICS AND
PHASE COEXISTENCE

The set of equations formed by Eq. (5) and the closure
(8) is solved by use of the hybrid Newton-Raphson proce-
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FIG. 2. [Excess free energy as a function of the reference-
system hard-sphere diameter d. The solid circle indicates the
value of d which satisfies Eq. (18).

dure proposed by Labik, Malijevsky, and Vonka [20] with
the Jacobian matrix remaining constant through the op-
timization iterations [19].

The essential change with respect to the two-body
problem treated in Refs. [19] and [20] lies in the fact
that the leading term in the Jacobian 8g(r)/87v is no
longer equal to g(r) (as in the case of the two-body HNC
and RHNC), but it is slightly more involved due to the
functional dependence of Bucf on the pair distribution
function. Here, by functional differentiation and retain-
ing only terms linear in g(r) one gets,

0g(r12) _
0v(r12)

One of the main advantages of this method is, in this
case, connected with the fact that the core of the iter-
ative scheme (the Newton-Rapshon loop) is carried en-
tirely in Fourier space, and thus the number of closure-
relation evaluations (the most time-consuming task) is
performed very few times before convergence is achieved.
Hence, the proposed method outperforms hybrid proce-
dures like that of Gillan [23] which require one evalu-
ation of the closure per Newton-Raphson iteration, let
alone the classical direct-substitution or mixing-iterates
methods.

In most of the calculations herein, standard LJ po-
tential parameters for Ar have been used [24], namely,
€/k =120 K, 0 = 3.405 A | and v/ec® = 0.072.

As a check of our method in Table I and Fig. 3 we com-
pare results from simulation, previous RHNC calcula-
tions [6], and perturbation theory [4], with those obtained
by use of the optimized RHNC. Calculations were carried
out using 4096 grid points and a grid size Ar = 0.010.
Three-dimensional integrals in Egs. (10), (12), (13), and
(14) were evaluated using Gauss-Legendre’s integration
with 80 nodes, and Simpson’s rule over the radial co-
ordinate with 200 points. The minimization condition
was considered satisfied when the absolute value of the
expression (18) was smaller than 107°. This can be a cru-
cial choice in the neighborhood of the no-solution line.

Results of Table I and Fig. 3 make evident that

g(ri2)[1 — 2,8ueﬂ(r12)] . (19)

P/pPkT

<
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FIG. 3. Compressibility factor of the LJ-Axilrod-Teller
fluid at k7'/e = 1.333. Solid circles denote MC data, RHNC
results with reference-system optimization are represented by
a solid line, and a dashed line denotes RHNC results without
optimization taken from Ref. [6].
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TABLE I. Pressure and internal energy of a fluid whose particles interact thorough a 6-12 LJ
potential (e/k = 120K, o = 3.405 A) and the Axilrod-Teller triple-dipole potential (v/ec® = 0.072)
computed via Monte Carlo simulation [6], RHNC approximation [6], perturbation theory [4], and
optimized RHNC approximation (present work).

kT /e = 1.033, po® = 0.65 kT /e = 0.746, po® = 0.817

U/NkT P/pkT U/NkT PJpkT
MC -4.227 0.15 -7.566 0.56
RHNC -4.2181 -0.0253 -7.486 0.8054
Pert. -4.224 0.138 -7.555 0.62
RHNC (op.) -4.221 -0.049 -7.531 0.241

the optimization procedure somewhat improves previous
RHNC calculations. This effect is more visible in the case
of the virial pressure where the optimized integral equa-
tion brings the theoretical values to a much closer agree-
ment with those obtained from Monte Carlo simulations,
as can be seen in Fig. 3. Still, one must note that there
is more room for further corrections to be added, and
Barker’s et al. perturbation theory remains unmatched.
The problem might actually be now the treatment of the
three-body interaction via the effective potential (10).
Note in this regard that in the derivation of Eq. (10) an
important number of cluster diagrams at least of order p?
are neglected [6], though some are indirectly accounted
for through the reference bridge function. Therefore as
density approaches the melting point one should not ex-
pect Eq. (10) to represent the effective interaction ade-
quately.

When calculations along several isotherms are per-
formed one immediately finds pairs of p values (pg, p1)

kT/€

0.7 | 1 1 |
0 02 0.4 06 08
po’
FIG. 4. Gas-liquid phase coexistence for the LJ-Axilrod-

Teller fluid. Optimized RHNC theory (solid line), experimen-
tal results from Ref. [25] (solid circles), and LJ results from
Ref. [26] (open triangles) are represented. The long dashed
line corresponds to a rough interpolation. The short-dashed
line denotes the no-solution boundary of the RHNC integral
equation.

which fulfill the phase equilibrium conditions

Bu(p, T)/N = Bulpy, T)/N , (20)
BP(pi1,T)o* = BP(py, T)o* .

where P is the pressure and u is the chemical potential.
This latter quantity is here evaluated through

Bu/N =Inp+ A /NkT + P/pkT + f(T) ,  (21)

where f(T') is a function of the temperature irrelevant
in a isothermal construction. Solving Egs. (20) we have
determined the phase diagram presented in Fig. 4. In-
side the no-solution region, the behavior of the coexis-
tence curve was estimated by interpolation and is repre-
sented in the figure by a dashed line. In Fig. 4 we also
show experimental results for argon [25], simulation val-
ues obtained for a 6-12 LJ fluid [26], and the no-solution
boundary of the integral equation. We can see that the
agreement between three-body RHNC results and exper-
imental data is very satisfactory, especially when com-
paring with the LJ simulation data. This proves that the
three-body classical dispersion forces described by the
Axilrod-Teller potential play an important role in phase
equilibrium. Explicit results for the phase coexistence
are also given in Table II.

One can see that the agreement is far better on the gas
side of the coexistence curve. In relation with this Hansen
and Verlet [11] suggested that the well known poor per-
formance of the LJ pair potential for Ar at low p and T
[12] might be responsible for the deviations between the
experimental results and the Lennard-Jones coexistence
We have found that the introduction of three-
body classical effects does not improve the predictions
for the second virial coefficients in the gas phase when
compared with the exact Lennard-Jones B(T). This im-
plies that the improvement on the gas phase coexistence
curve simply reflects a more appropriate treatment of the
liquid side through the equilibrium conditions.

The critical temperature predicted by the theory
(~ 150 K) is quite close to the experimental value of
150.87 K, and is substantially better than the two-body
Lennard-Jones fluid critical temperature (163 K). Unfor-
tunately, calculations cannot be extended to the vicinity
of the critical region since the numerical solution of the
integral equation breaks down. In the next section we
investigate the nature of the divergence and possible al-
ternatives to overcome this pitfall.

curve.
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TABLE II. Phase coexistence data for Argon. LJ results are taken from Ref. [26] and experi-
mental results from Refs. [11] and [25].
6-12 LJ (sim.) RHNC(op.) Expt.
kT /e pgo”’ p1o’ pgo’ pio’ pgo”° po’
0.750 0.0028 0.820 0.00442 0.80429 0.0047 0.818
1.000 0.0281 0.698 0.03188 0.68411 0.0361 0.6894
1.150 0.076 0.606 0.08600 0.59138 0.0957 0.5761

Finally, we have also experimented with a different
set of parameters for the two-body interactions. Now
the Lennard-Jones parameters are determined via a self-
consistent quantum-mechanical calculation [24] which
yields a well depth ¢/k =83 K and o =3.350 A. This,

in turn, leads to v/ec® = 0.1202. The coexistence curve
for this ab initio model is plotted in Fig. 5. It is obvious
from the figure that the use of potential parameters ex-
tracted from experimental results it is more appropriate.

IV. NO-SOLUTION BOUNDARIES
IN THE RHNC EQUATION

The existence of a no-solution boundary for the in-
tegral equation is closely connected with the phase co-
existence. The desirable situation would be to have a
spinodal line delimiting the no-solution region. But un-
fortunately the RHNC equation behaves in a peculiar
way.

The behavior of the integral equation in the vicinity
of the no-solution region can be explored monitoring the
isothermal compressibility xr along an isochore, when
approaching the end point where the integral equation
breaks down. In a pure spinodal behavior, x7 should

diverge to infinity according to a power law. This is not
the case for the RHNC closure.

In previous works [15,16] the low-density behavior of
the HNC equation (note that HNC and RHNC coincide
at low densities) has been studied in detail. One of the
leading conclusions of the analysis in Refs. [15] and [16] is
that the low-density boundary of the no-solution region
of the integral equation is not spinodal. Isochores end
at the no-solution line in square-root branch points [16]
where two solutions of the integral equation merge (one
of then physically meaningful). The limiting behavior of
the compressibility can then be fitted to an expression of
the form [27]

-1
(”XTT) =b+ay/T-T, (22)
with T, being the temperature at the no-solution line.
This sort of behavior has also been found by us here.
This is illustrated in Fig. 6, which shows the fitting of
the inverse isotherm compressibility to (22) at po® = 0.1.
The results confirm that the present integral equation has
the aforementioned singularity in the low-density region.
This feature is inherent to the HNC and related integral
equations whenever there is a possible phase separation
(16].

In the high-density boundary, although the compress-

T T T s . - . .
3 ibility diverges to infinity, it also deviates from a spinodal
' behavior. In this regard Poll and Ashcroft [28] found a
o * T e, nonclassical divergence in the RHNC equation for a two-
Yukawa fluid different from the power-law dependence.
T T
w
~ .24 .
S
ajla
0.2 —
]
0.7 ] 1 1 |
0 02 0.4 06 08
pa? o 5001 501 X
FIG. 5. Gas-liquid coexistence curve for two sets of LJ o
parameters for the LJ-Axilrod-Teller fluid (e/k = 120 K, FIG. 6. Inverse isothermal compressibility close to the no-

o = 3.405 A, solid line) and (¢/k = 83 K, o = 3.350 A,
dashed line). Experimental data for argon are denoted by
filled circles.

solution boundary at po® = 0.1. Solid circles represent the
values rendered by the integral equation and the line denotes
a nonlinear fit of Eq. (22).
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FIG. 7. Dz(xr) vs kT /e [see Eq. (23) in the text]. The

dashed line would represent a spinodal power-law divergence.

By monitoring the function
d[ln(l/m)])"

(23)

Dr(xr) = ( a7

along an isochore one finds that if the variation of xr
is spinodal (i.e., x7 ~ [(T — Ta)/Ta)” "), Dr(xr) should
be linear in T near T,. Figure 7 shows a plot of Dr(xr)
vs T in the present problem for an isochore evaluated
at po® = 0.5. The behavior is similar to that found by
Poll and Ashcroft [28] and we may say that also here a
nonclassical divergence takes place.

We can then conclude that a main drawback of the
RHNC approach in relation with the treatment of phase
coexistence problems is the inability of the integral equa-
tion to render results in a region of considerable extent
around the critical temperature. This is a pathological
feature of the RHNC (and HNC) which is absent in other
integral equations such us the mean spherical approxi-
mation (MSA). This suggests that a combination of the
MSA long-range behavior and a term that corrects the
poor performance of this approximation close to the par-
ticle core (such as using a hard-sphere fluid bridge func-
tion) would provide an alternative to bypass the deficien-
cies inherent to HNC-like approximations. This idea es-
sentially constitutes the so-called crossover integral equa-
tion (CRS), proposed by Foiles, Ashcroft, and Reatto
[14]. In a parallel work we have investigated this approx-
imation for the pairwise Lennard-Jones system [13]. and
the no-solution line of this equation is shown in Fig. 8 to-
gether with coexistence curve for the LJ fluid from com-
puter simulation and in the RHNC approximation. Here
it can be appreciated that the no-solution line for the
CRS equation lies always inside the coexistence curve.
Moreover, the maximum of the no-solution line is found
in the neighborhood of the simulated critical point. The
boundary is produced by a spinodal divergence both at
low and high density in accordance with the findings of

15 T T T T
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/7 \\\
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/ O\
\,\\
A\
w —
—
L !
02 04
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FIG. 8. Gas-liquid phase-coexistence curve for the 6-12
LJ fluid computed from the RHNC equation (solid line) and
Gibbs ensemble simulation from Ref. [26] (open circles). The
dashed line indicates the no-solution line of the RHNC equa-
tion, and the dot-dashed line indicates the no-solution line of
the CRS equation.

Poll and Ashcroft [28], who encountered a typical power-
law divergence with MSA critical exponents. It is not
surprising that for low densities this approximation is
free from the square-root branch points that affect the
HNC equation. One must bear in mind, in this regard,
that the bridge function vanishes with density as p?, so
the MSA contribution becomes the drawing force as far
as the spinodal decomposition is concerned. However.
one should not expect the MSA component to be able to
capture the important association and clustering effects
that can be found for low densities and strong attractive
interactions [29].

A major shortcoming of the CRS approximation is the
lack of a closed expression to compute free energies or
chemical potentials. This problem might be solved at
low densities or above the critical temperature by stan-
dard thermodynamic integration, but on the liquid side
of the spinodal boundary there is no alternative route.
and therefore, unfortunately the CRS integral equation
is not yet a viable approach to determine the coexistence
curve.
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